It may not time travel, but Stanford University engineers unveiled a DeLorean modified to be self-driving, electric, and drift like a pro driver on Tuesday, Oct. 20.
The DeLorean is nicknamed MARTY, which stands for Multiple Actuator Research Test bed for Yaw control. It was developed by Stanford mechanical engineering professor Chris Gerdes and his students to research how cars perform in extreme situations and ultimately develop better safety mechanisms in cars.
The engineers' announcement of MARTY was timely as today, Oct. 21, is the future date that Marty McFly and Doc Brown use their time machine DeLorean to travel to in the 1989 film "Back to the Future Part II."
"We want to design automated vehicles that can take any action necessary to avoid an accident," Gerdes said in a statement. "The laws of physics will limit what the car can do, but we think the software should be capable of any possible maneuver within those limits. MARTY is another step in this direction, thanks to the passion and hard work of our students."
According to graduate student Jonathan Goh who was in charge of engineering MARTY's drifting technique, the car can lock itself into a perfectly circular donut at a large drift angle. This is the first step on the path to a self-driving car that can deal with extreme situations, according to Stanford officials.
"The sublime awesomeness of riding in a DeLorean that does perfect, smoke-filled donuts by itself is a mind-bending experience that helps you appreciate that we really are living in the future," Goh said in a statement.
MARTY was built in partnership with Silicon Valley electric vehicle tech startup Renovo Motors, which gave the Stanford team early access to a brand new platform that allows precise control of the gearboxes and rear wheels during drifting.
According to Goh, the car's systems are managed by a central application program interface, which allowed the integration process of replacing the original gasoline engine to happen over the course of just a few months.
Ultimately, Gerdes and the seven students involved in Gerdes' Dynamic Design Lab hope to program the car to be able to drift around a track, interact with a car steered by a human, and be able to negotiate tight turns and obstacles when required.
"A drift competition is the perfect blend of our two most important research questions: how to control the car precisely and how to design automated vehicles that interact with humans," Gerdes said in a statement.
"While we aren't picturing a future where every car produces clouds of white tire smoke during the daily commute, we do want automated vehicles that can decipher the subtle cues drivers give when driving and incorporate this feedback when planning motion."
To watch a video of MARTY in action, click here.
Comments
Another Palo Alto neighborhood
on Oct 22, 2015 at 10:50 am
on Oct 22, 2015 at 10:50 am
Not sure we get many extreme conditions here!
Midtown
on Oct 22, 2015 at 1:09 pm
on Oct 22, 2015 at 1:09 pm
I would think the goal here is to make the computer smart enough to be able to avert collisions (head-on or otherwise) and to not trigger secondary collisions during the maneuver.
The second part, not triggering secondary collisions, would be much more difficult to program, especially when there are other moving objects (cars, bikes, pedestrians, etc) involved in the vicinity.
Since the reactions from these nearby moving objects are difficult to predict and counteract.
UNLESS...
All of these other moving objects could be somehow coordinated to react in unison.
(Automated Collision Control Interface Data Exchange Network Telemetry?)
Now we are talking about the future.
Midtown
on Oct 22, 2015 at 5:02 pm
on Oct 22, 2015 at 5:02 pm
I can't think of anything more important or relevant to modern man than a computer car that spins perfect donuts and simultaneously pours perfect coffee, all at the same time.